\[ x - 2y = 10, \quad 2x - y - z = 8, \quad -2y + z = 7. \]
Step 1: Represent the system in matrix form.
The given system of equations can be written as:
\[ A \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}, \]
where
\[ A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} \text{ is the constant matrix.} \]
Step 2: Find \( A^{-1} \).
The inverse of a \( 3 \times 3 \) matrix \( A \) is given by:
\[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A), \]
where \(\text{det}(A)\) is the determinant of \( A \) and \(\text{adj}(A)\) is the adjugate of \( A \).
(a) Compute \(\text{det}(A)\):
\[ \text{det}(A) = \begin{vmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{vmatrix}. \]
Expanding along the first row:
\[ \text{det}(A) = 1 \cdot \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & -1 \\ 0 & -2 \end{vmatrix}. \]
Compute the minors:
\[ \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} = (-1)(1) - (-1)(-2) = -1 - 2 = -3, \]
\[ \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} = (2)(1) - (-1)(0) = 2 - 0 = 2. \]
Substitute back:
\[ \text{det}(A) = 1(-3) - (-2)(2) + 0 = -3 + 4 = 1. \]
(b) Compute \(\text{adj}(A)\):
The adjugate of \( A \) is the transpose of the cofactor matrix. Compute the cofactors for each element of \( A \):
\[ \text{Cofactor matrix of } A = \begin{bmatrix} -3 & 2 & 4 \\ 1 & 1 & -2 \\ 4 & 2 & 5 \end{bmatrix}. \]
Thus:
\[ \text{adj}(A) = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix}. \]
(c) Compute \( A^{-1} \):
\[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \text{adj}(A), \]
as \(\text{det}(A) = 1\). Thus:
\[ A^{-1} = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix}. \]
Step 3: Solve for \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\).
Using the formula:
\[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1} \cdot \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}, \]
compute the product:
\[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}. \]
Perform the multiplication:
\[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3(10) + 1(8) + 4(7) \\ 2(10) + 1(8) + 2(7) \\ 4(10) - 2(8) + 5(7) \end{bmatrix}. \]
Simplify each term:
\[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -30 + 8 + 28 \\ 20 + 8 + 14 \\ 40 - 16 + 35 \end{bmatrix} = \begin{bmatrix} 6 \\ 42 \\ 59 \end{bmatrix}. \]
Final Answer:
\[ x = 6, \quad y = 42, \quad z = 59. \]
Assertion (A): The corner points of the bounded feasible region of a L.P.P. are shown below. The maximum value of \( Z = x + 2y \) occurs at infinite points.
Reason (R): The optimal solution of a LPP having bounded feasible region must occur at corner points.
Arrange the following states in sequence (highest to lowest) according to their reserves of iron ore and choose the correct option.
I. Jharkhand
II. Karnataka
III. Chhattisgarh
IV. Odisha