\[ x - 2y = 10, \quad 2x - y - z = 8, \quad -2y + z = 7. \]
Step 1: Represent the system in matrix form.
The given system of equations can be written as:
\[ A \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}, \]
where
\[ A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} \text{ is the constant matrix.} \]
Step 2: Find \( A^{-1} \).
The inverse of a \( 3 \times 3 \) matrix \( A \) is given by:
\[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A), \]
where \(\text{det}(A)\) is the determinant of \( A \) and \(\text{adj}(A)\) is the adjugate of \( A \).
(a) Compute \(\text{det}(A)\):
\[ \text{det}(A) = \begin{vmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{vmatrix}. \]
Expanding along the first row:
\[ \text{det}(A) = 1 \cdot \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & -1 \\ 0 & -2 \end{vmatrix}. \]
Compute the minors:
\[ \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} = (-1)(1) - (-1)(-2) = -1 - 2 = -3, \]
\[ \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} = (2)(1) - (-1)(0) = 2 - 0 = 2. \]
Substitute back:
\[ \text{det}(A) = 1(-3) - (-2)(2) + 0 = -3 + 4 = 1. \]
(b) Compute \(\text{adj}(A)\):
The adjugate of \( A \) is the transpose of the cofactor matrix. Compute the cofactors for each element of \( A \):
\[ \text{Cofactor matrix of } A = \begin{bmatrix} -3 & 2 & 4 \\ 1 & 1 & -2 \\ 4 & 2 & 5 \end{bmatrix}. \]
Thus:
\[ \text{adj}(A) = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix}. \]
(c) Compute \( A^{-1} \):
\[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \text{adj}(A), \]
as \(\text{det}(A) = 1\). Thus:
\[ A^{-1} = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix}. \]
Step 3: Solve for \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\).
Using the formula:
\[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1} \cdot \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}, \]
compute the product:
\[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}. \]
Perform the multiplication:
\[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3(10) + 1(8) + 4(7) \\ 2(10) + 1(8) + 2(7) \\ 4(10) - 2(8) + 5(7) \end{bmatrix}. \]
Simplify each term:
\[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -30 + 8 + 28 \\ 20 + 8 + 14 \\ 40 - 16 + 35 \end{bmatrix} = \begin{bmatrix} 6 \\ 42 \\ 59 \end{bmatrix}. \]
Final Answer:
\[ x = 6, \quad y = 42, \quad z = 59. \]
Assertion (A): The corner points of the bounded feasible region of a L.P.P. are shown below. The maximum value of \( Z = x + 2y \) occurs at infinite points.
Reason (R): The optimal solution of a LPP having bounded feasible region must occur at corner points.
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |