Step 1: Represent the system in matrix form.
The given system of equations can be written as:
\[
A \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix},
\]
where
\[
A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} \text{ is the constant matrix.}
\]
Step 2: Find \(A^{-1}\).
The inverse of a \(3 \times 3\) matrix \(A\) is given by:
\[
A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A),
\]
where \(\text{det}(A)\) is the determinant of \(A\) and \(\text{adj}(A)\) is the adjugate of \(A\).
# (a) Compute \(\text{det}(A)\):
\[
\text{det}(A) = \begin{vmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{vmatrix}.
\]
Expanding along the first row:
\[
\text{det}(A) = 1 \cdot \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & -1 \\ 0 & -2 \end{vmatrix}.
\]
Compute the minors:
\[
\begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} = (-1)(1) - (-1)(-2) = -1 - 2 = -3,
\]
\[
\begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} = (2)(1) - (-1)(0) = 2 - 0 = 2.
\]
Substitute back:
\[
\text{det}(A) = 1(-3) - (-2)(2) + 0 = -3 + 4 = 1.
\]
# (b) Compute \(\text{adj}(A)\):
The adjugate of \(A\) is the transpose of the cofactor matrix. Compute the cofactors for each element of \(A\):
\[
\text{Cofactor matrix of } A =
\begin{bmatrix}
-3 & 2 & 4 \\
1 & 1 & -2 \\
4 & 2 & 5
\end{bmatrix}.
\]
Thus:
\[
\text{adj}(A) = \begin{bmatrix}
-3 & 1 & 4 \\
2 & 1 & 2 \\
4 & -2 & 5
\end{bmatrix}.
\]
# (c) Compute \(A^{-1}\):
\[
A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \text{adj}(A),
\]
as \(\text{det}(A) = 1\). Thus:
\[
A^{-1} = \begin{bmatrix}
-3 & 1 & 4 \\
2 & 1 & 2 \\
4 & -2 & 5
\end{bmatrix}.
\]
Step 3: Solve for \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\).
Using the formula:
\[
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1} \cdot \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix},
\]
compute the product:
\[
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix}
-3 & 1 & 4 \\
2 & 1 & 2 \\
4 & -2 & 5
\end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}.
\]
Perform the multiplication:
\[
\begin{bmatrix} x \\ y \\ z \end{bmatrix} =
\begin{bmatrix}
-3(10) + 1(8) + 4(7) \\
2(10) + 1(8) + 2(7) \\
4(10) - 2(8) + 5(7)
\end{bmatrix}.
\]
Simplify each term:
\[
\begin{bmatrix} x \\ y \\ z \end{bmatrix} =
\begin{bmatrix}
-30 + 8 + 28 \\
20 + 8 + 14 \\
40 - 16 + 35
\end{bmatrix} =
\begin{bmatrix}
6 \\
42 \\
59
\end{bmatrix}.
\]
Final Answer:
\[
x = 6, \quad y = 42, \quad z = 59.
\]