Step 1: We are given \( A + B = \dfrac{\pi}{4} \). This implies \( B = \dfrac{\pi}{4} - A \).
Step 2: Substitute \( B \) into the expression: \[ \dfrac{\cos B - \sin B}{\cos B + \sin B} = \dfrac{\cos(\frac{\pi}{4} - A) - \sin(\frac{\pi}{4} - A)}{\cos(\frac{\pi}{4} - A) + \sin(\frac{\pi}{4} - A)} \] Step 3: Use trigonometric identities: \[ \cos(\frac{\pi}{4} - A) = \cos\frac{\pi}{4}\cos A + \sin\frac{\pi}{4}\sin A = \frac{1}{\sqrt{2}}(\cos A + \sin A) \] \[ \sin(\frac{\pi}{4} - A) = \sin\frac{\pi}{4}\cos A - \cos\frac{\pi}{4}\sin A = \frac{1}{\sqrt{2}}(\cos A - \sin A) \] Step 4: Substitute into the main expression: \[ \dfrac{\frac{1}{\sqrt{2}}(\cos A + \sin A) - \frac{1}{\sqrt{2}}(\cos A - \sin A)}{\frac{1}{\sqrt{2}}(\cos A + \sin A) + \frac{1}{\sqrt{2}}(\cos A - \sin A)} = \dfrac{2\sin A}{2\cos A} = \tan A \]
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.