If\( \vec{a}=\vec{b}+\vec{c}\), then is it true that |\(\vec{a}\)|=|\(\vec{b}\)|+|\(\vec{c}\)| ? justify your answer.
In \(△ABC\),let \(\overrightarrow{CB}=\vec{a},\overrightarrow{CA}=\vec{b},\)and \(\overrightarrow{AB}=\vec{c}\)(as shown in the following figure).
Now,by the triangle law of vector addition,we have \(\vec{a}=\vec{b}+\vec{c}\).
It is clearly known that |\(\vec{a}\)|,|\(\vec{b}\)|,and |\(\vec{c}\)|represent the sides of \(△ABC.\)
Also,it is known that the sum of the lengths of any two sides of a triangle is greater than the third side.
∴|\(\vec{a}\)|<|\(\vec{b}\)|+|\(\vec{c}\)|
|Hence,it is not true that |\(\vec{a}\)|=|\(\vec{b}\)|+|\(\vec{c}\)|.
Commodities | 2009-10 | 2010-11 | 2015-16 | 2016-17 |
---|---|---|---|---|
Agriculture and allied products | 10.0 | 9.9 | 12.6 | 12.3 |
Ore and minerals | 4.9 | 4.0 | 1.6 | 1.9 |
Manufactured goods | 67.4 | 68.0 | 72.9 | 73.6 |
Crude and petroleum products | 16.2 | 16.8 | 11.9 | 11.7 |
Other commodities | 1.5 | 1.2 | 1.1 | 0.5 |
Categories of Reporting Area | As a percentage of total cultivable land (1950-51) | As a percentage of total cultivable land (2014-15) | Area (1950-51) | Area (2014-15) |
---|---|---|---|---|
Culturable waste land | 8.0 | 4.0 | 13.4 | 6.8 |
Fallow other than current fallow | 6.1 | 3.6 | 10.2 | 6.2 |
Current fallow | 3.7 | 4.9 | 6.2 | 8.4 |
Net area sown | 41.7 | 45.5 | 70.0 | 78.4 |
Total Cultivable Land | 59.5 | 58.0 | 100.00 | 100.00 |