Use sum-to-product identities. Also, known identity for sum of four sines when angles add up to \( 2\pi \): \[ \sin A + \sin B + \sin C + \sin D = 4\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A + C}{2} \right)\sin\left( \frac{A + D}{2} \right) \]