1. Convert negative exponents: \(x^{-1} = 1/x\).
So, \( \sqrt{a^{-1}b} = \sqrt{b/a} \), etc.
2. Combine under one square root:
\( \sqrt{b/a \cdot c/b \cdot a/c} \)
3. Multiply the fractions inside:
\( \sqrt{(bca)/(abc)} \)
4. Cancel terms: Since multiplication is commutative (\(bca = abc\)), the fraction simplifies to 1.
\( \sqrt{1} = 1 \).