Let: \[ 14^a = 36^b = 84^c = k \] Then taking logarithms: \[ a = \log_{14} k \Rightarrow \frac{1}{a} = \log_k 14 \] Similarly: \[ b = \log_{36} k, \quad \frac{1}{c} = \log_k 84 \]
We are asked to find the value of the expression: \[ 6b \left( \frac{1}{c} - \frac{1}{a} \right) \]
Substituting: \[ 6 \cdot \log_{36} k \cdot (\log_k 84 - \log_k 14) \]
Using log subtraction rule: \[ = 6 \cdot \log_{36} k \cdot \log_k \left( \frac{84}{14} \right) = 6 \cdot \log_{36} k \cdot \log_k 6 \]
Applying change of base: \[ \log_{36} k = \frac{1}{\log_k 36}, \quad \log_k 6 = \log_k 6 \] So: \[ = 6 \cdot \frac{1}{\log_k 36} \cdot \log_k 6 = 6 \cdot \frac{\log_k 6}{\log_k 36} \] Now note: \[ \log_k 36 = \log_k (6^2) = 2 \log_k 6 \Rightarrow \frac{\log_k 6}{2 \log_k 6} = \frac{1}{2} \]
Final expression: \[ 6 \cdot \frac{1}{2} = \boxed{3} \]
\(\boxed{3}\)
Given: \[ 14^a = 36^b = 84^c \] First, express all numbers in their prime factorizations: \[ 14 = 2 \cdot 7, \quad 36 = 2^2 \cdot 3^2, \quad 84 = 2^2 \cdot 3 \cdot 7 \]
Raising each to the powers \( a \), \( b \), and \( c \) respectively: \[ 14^a = 2^a \cdot 7^a,\quad 36^b = 2^{2b} \cdot 3^{2b},\quad 84^c = 2^{2c} \cdot 3^c \cdot 7^c \]
Since all three expressions are equal: \[ 2^a \cdot 7^a = 2^{2b} \cdot 3^{2b} = 2^{2c} \cdot 3^c \cdot 7^c \] Comparing powers of each prime:
Hence: \[ a = 2b = 2c \Rightarrow b = c \]
Now evaluate the expression: \[ 6b \left( \frac{1}{c} - \frac{1}{a} \right) \] Substituting \( c = b \) and \( a = 2b \): \[ 6b \left( \frac{1}{b} - \frac{1}{2b} \right) = 6b \cdot \left( \frac{2 - 1}{2b} \right) = 6b \cdot \frac{1}{2b} = 3 \]
\(\boxed{3}\)
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
When $10^{100}$ is divided by 7, the remainder is ?