The function \( f(x) = \tan^{-1} (\sin x + \cos x) \) is an increasing function in:
If \( A = \begin{bmatrix} 1 & 0 \\ 1/2 & 1 \end{bmatrix} \), then \( A^{50} \) is:
The range of the function \( f(x) = \sin^{-1}(x - \sqrt{x}) \) is equal to?
A geometric progression is the sequence, in which each term is varied by another by a common ratio. The next term of the sequence is produced when we multiply a constant to the previous term. It is represented by: a, ar1, ar2, ar3, ar4, and so on.
Important properties of GP are as follows:
If a1, a2, a3,… is a GP of positive terms then log a1, log a2, log a3,… is an AP (arithmetic progression) and vice versa