Step 1: Understand the given expression.
We are given the following conditions:
\( a + b + c = 11 \)
\( ab + bc + ca = 35 \)
We need to find the value of the expression:
\[ (a - b)^2 + (b - c)^2 + (c - a)^2 \]
Step 2: Expand the given expression.
First, let's expand the terms:
\[
(a - b)^2 + (b - c)^2 + (c - a)^2 = a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2ca + a^2
\]
Combine like terms:
\[
= 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca
\]
Factor out the common factor of 2:
\[
= 2(a^2 + b^2 + c^2 - ab - bc - ca)
\]
Step 3: Use the given conditions.
We are given \( ab + bc + ca = 35 \). Now, we need to find \( a^2 + b^2 + c^2 \). We can use the identity:
\[
(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
\]
Substitute \( a + b + c = 11 \) and \( ab + bc + ca = 35 \):
\[
11^2 = a^2 + b^2 + c^2 + 2(35)
\]
\[
121 = a^2 + b^2 + c^2 + 70
\]
\[
a^2 + b^2 + c^2 = 121 - 70 = 51
\]
Step 4: Substitute into the expression.
Now substitute \( a^2 + b^2 + c^2 = 51 \) and \( ab + bc + ca = 35 \) into the expression for \( (a - b)^2 + (b - c)^2 + (c - a)^2 \):
\[
= 2(a^2 + b^2 + c^2 - ab - bc - ca)
\]
\[
= 2(51 - 35) = 2 \times 16 = 32
\]
Step 5: Conclusion.
The value of \( (a - b)^2 + (b - c)^2 + (c - a)^2 \) is 32.