If a,b, and c are real numbers and determinant \(\Delta = \begin{vmatrix} b+c &c+a &a+b \\ c+a&a+b &b+c \\ a+b&b+c &c+a \end{vmatrix}\)
Show that either a+b+c=0 or a=b=c.
\(\Delta = \begin{vmatrix} b+c &c+a &a+b \\ c+a&a+b &b+c \\ a+b&b+c &c+a \end{vmatrix}\)
Applying R1\(\rightarrow\)R1+R2+R3, we have,
\(\Delta = \begin{vmatrix} 2(a+b+c) &2(a+b+c) &2(a+b+c) \\ c+a&a+b &b+c \\ a+b&b+c &c+a \end{vmatrix}\)
=2(a+b+c)\(\begin{vmatrix} 1&1 &1 \\ c+a&a+b &b+c \\ a+b&b+c &c+a \end{vmatrix}\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1,we have,
Δ=2(a+b+c)\(\begin{vmatrix} 1&1 &1 \\ c+a&a+b &b+c \\ a+b&b+c &c+a \end{vmatrix}\)
Expanding along R1,we have:
Δ=2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]
=2(a+b+c)[-b2-c2+2bc-bc+ba+ac-a2]
=2(a+b+c)[ab+bc+ca-a2-b2-c2]
It is given that Δ=0.
(a+b+c)[ab+bc+ca-a2-b2-c2]=0
⇒ Either a+b+c=0,or ab+bc+ca-a2-b2-c2=0.
Now,
ab+bc+ca-a2-b2-c2=0.
⇒ -2ab-2bc-2ca+2a2+2b2+2c2=0
⇒ (a-b)2+(b-c)2+(c-a)2=0
⇒ (a-b)2=(b-c)2=(c-a)2=0 [(a-b)2,(b-c)2,(c-a)2 are non-negative]
⇒ (a-b)=(b-c)=(c-a)=0
⇒ a=b=c
Hence,if ∆=0, then either a+b+c=0 or a=b=c.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to