Question:

If a,b, and c are real numbers and determinant \(\Delta = \begin{vmatrix} b+c &c+a  &a+b \\   c+a&a+b  &b+c \\   a+b&b+c  &c+a  \end{vmatrix}\)
Show that either a+b+c=0 or a=b=c. 

Updated On: Sep 1, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\Delta = \begin{vmatrix} b+c &c+a  &a+b \\   c+a&a+b  &b+c \\   a+b&b+c  &c+a  \end{vmatrix}\)
Applying R1\(\rightarrow\)R1+R2+R3, we have,
\(\Delta = \begin{vmatrix} 2(a+b+c) &2(a+b+c)   &2(a+b+c)  \\   c+a&a+b  &b+c \\   a+b&b+c  &c+a  \end{vmatrix}\)
=2(a+b+c)\(\begin{vmatrix}  1&1  &1 \\   c+a&a+b &b+c \\   a+b&b+c  &c+a  \end{vmatrix}\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1,we have,
Δ=2(a+b+c)\(\begin{vmatrix}  1&1  &1 \\   c+a&a+b &b+c \\   a+b&b+c  &c+a  \end{vmatrix}\)

Expanding along R1,we have:
Δ=2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]
=2(a+b+c)[-b2-c2+2bc-bc+ba+ac-a2]
=2(a+b+c)[ab+bc+ca-a2-b2-c2]

It is given that Δ=0.
(a+b+c)[ab+bc+ca-a2-b2-c2]=0
⇒ Either a+b+c=0,or ab+bc+ca-a2-b2-c2=0.

Now,
ab+bc+ca-a2-b2-c2=0.
⇒ -2ab-2bc-2ca+2a2+2b2+2c2=0
⇒ (a-b)2+(b-c)2+(c-a)2=0
⇒ (a-b)2=(b-c)2=(c-a)2=0     [(a-b)2,(b-c)2,(c-a)2 are non-negative]
⇒ (a-b)=(b-c)=(c-a)=0
⇒ a=b=c

Hence,if ∆=0, then either a+b+c=0 or a=b=c.

Was this answer helpful?
0
0