Δ=|b+c c+a a+b c+a a+b b+c a+b b+c c+a|
Applying R1→R1+R2+R3,we have,
Δ=|2(a+b+c) 2(a+b+c) 2(a+b+c) c+a a+b b+c a+b b+c c+a|
=2(a+b+c)|111 c+a a+b b+c a+b b+c c+a|
Applying C2→C2-C1 and C3→C3-C1,we have,
Δ=2(a+b+c)|100 c+a a+b b+c a+b b+c c+a|
Expanding along R1,we have:
Δ=2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]
=2(a+b+c)[-b2-c2+2bc-bc+ba+ac-a2]
=2(a+b+c)[ab+bc+ca-a2-b2-c2]
It is given that Δ=0.
(a+b+c)[ab+bc+ca-a2-b2-c2]=0
⇒Either a+b+c=0,or ab+bc+ca-a2-b2-c2=0.
Now,
ab+bc+ca-a2-b2-c2=0.
⇒-2ab-2bc-2ca+2a2+2b2+2c2=0
⇒(a-b)2+(b-c)2+(c-a)2=0
⇒(a-b)2=(b-c)2=(c-a)2=0 [(a-b)2,(b-c)2,(c-a)2 are non-negative]
⇒(a-b)=(b-c)=(c-a)=0
⇒a=b=c
Hence,if ∆=0,then either a+b+c=0 or a=b=c.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
मोबाइल फोन विहीन दुनिया — 120 शब्दों में रचनात्मक लेख लिखिए :