Δ=|b+c c+a a+b c+a a+b b+c a+b b+c c+a|
Applying R1→R1+R2+R3,we have,
Δ=|2(a+b+c) 2(a+b+c) 2(a+b+c) c+a a+b b+c a+b b+c c+a|
=2(a+b+c)|111 c+a a+b b+c a+b b+c c+a|
Applying C2→C2-C1 and C3→C3-C1,we have,
Δ=2(a+b+c)|100 c+a a+b b+c a+b b+c c+a|
Expanding along R1,we have:
Δ=2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]
=2(a+b+c)[-b2-c2+2bc-bc+ba+ac-a2]
=2(a+b+c)[ab+bc+ca-a2-b2-c2]
It is given that Δ=0.
(a+b+c)[ab+bc+ca-a2-b2-c2]=0
⇒Either a+b+c=0,or ab+bc+ca-a2-b2-c2=0.
Now,
ab+bc+ca-a2-b2-c2=0.
⇒-2ab-2bc-2ca+2a2+2b2+2c2=0
⇒(a-b)2+(b-c)2+(c-a)2=0
⇒(a-b)2=(b-c)2=(c-a)2=0 [(a-b)2,(b-c)2,(c-a)2 are non-negative]
⇒(a-b)=(b-c)=(c-a)=0
⇒a=b=c
Hence,if ∆=0,then either a+b+c=0 or a=b=c.
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).