To determine whether two vectors are perpendicular, check if their dot product is zero. The dot product \( \vec{a} \cdot \vec{b} = 0 \) implies that the vectors \( \vec{a} \) and \( \vec{b} \) are perpendicular.
The correct answer is: (B): \(\vec{a}\) and \(\vec{b}\) are perpendicular.
We are given that:
\( |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \)
Step 1: Square both sides
We begin by squaring both sides of the equation to eliminate the magnitudes:
\( |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2 \)
Step 2: Expand both sides
Now, expand both sides using the formula for the square of the magnitude of a vector, \( |\vec{u}|^2 = \vec{u} \cdot \vec{u} \):
\( (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) \)
Expanding both sides gives:
\( \vec{a} \cdot \vec{a} + 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a} - 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} \)
Step 3: Simplify the equation
Canceling the common terms \( \vec{a} \cdot \vec{a} \) and \( \vec{b} \cdot \vec{b} \) from both sides, we are left with:
\( 2\vec{a} \cdot \vec{b} = -2\vec{a} \cdot \vec{b} \)
Step 4: Solve for \( \vec{a} \cdot \vec{b} \)
By simplifying this, we get:
\( 4\vec{a} \cdot \vec{b} = 0 \)
This implies:
\( \vec{a} \cdot \vec{b} = 0 \)
Conclusion:
The dot product of \( \vec{a} \) and \( \vec{b} \) is zero, which means that the vectors \( \vec{a} \) and \( \vec{b} \) are perpendicular.
You are given a dipole of charge \( +q \) and \( -q \) separated by a distance \( 2l \). A sphere 'A' of radius \( R \) passes through the centre of the dipole as shown below and another sphere 'B' of radius \( 2R \) passes through the charge \( +q \). Then the electric flux through the sphere A is