To determine whether two vectors are perpendicular, check if their dot product is zero. The dot product \( \vec{a} \cdot \vec{b} = 0 \) implies that the vectors \( \vec{a} \) and \( \vec{b} \) are perpendicular.
The correct answer is: (B): \(\vec{a}\) and \(\vec{b}\) are perpendicular.
We are given that:
\( |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \)
Step 1: Square both sides
We begin by squaring both sides of the equation to eliminate the magnitudes:
\( |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2 \)
Step 2: Expand both sides
Now, expand both sides using the formula for the square of the magnitude of a vector, \( |\vec{u}|^2 = \vec{u} \cdot \vec{u} \):
\( (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) \)
Expanding both sides gives:
\( \vec{a} \cdot \vec{a} + 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a} - 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} \)
Step 3: Simplify the equation
Canceling the common terms \( \vec{a} \cdot \vec{a} \) and \( \vec{b} \cdot \vec{b} \) from both sides, we are left with:
\( 2\vec{a} \cdot \vec{b} = -2\vec{a} \cdot \vec{b} \)
Step 4: Solve for \( \vec{a} \cdot \vec{b} \)
By simplifying this, we get:
\( 4\vec{a} \cdot \vec{b} = 0 \)
This implies:
\( \vec{a} \cdot \vec{b} = 0 \)
Conclusion:
The dot product of \( \vec{a} \) and \( \vec{b} \) is zero, which means that the vectors \( \vec{a} \) and \( \vec{b} \) are perpendicular.
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |