We are to minimize:
\[
y = \frac{b^2}{a - x} + \frac{a^2}{x}
\]
Let’s differentiate with respect to \( x \):
\[
\frac{dy}{dx} = \frac{b^2}{(a - x)^2} - \frac{a^2}{x^2}
\]
Set \( \frac{dy}{dx} = 0 \):
\[
\frac{b^2}{(a - x)^2} = \frac{a^2}{x^2}
\Rightarrow \frac{b}{a - x} = \frac{a}{x}
\Rightarrow bx = a(a - x)
\Rightarrow bx = a^2 - ax
\Rightarrow x(b + a) = a^2
\Rightarrow x = \frac{a^2}{a + b}
\]
Now plug back into the expression for \( y \):
\[
y = \frac{b^2}{a - x} + \frac{a^2}{x}
\Rightarrow y = \frac{b^2}{a - \frac{a^2}{a + b}} + \frac{a^2}{\frac{a^2}{a + b}}
= \frac{b^2(a + b)}{a(a + b) - a^2} + (a + b)
= \frac{b^2(a + b)}{ab} + a + b
= \frac{b(a + b)}{a} + a + b
\]
This is not simplifying to a closed value unless values are known. Try:
Let \( a = b = 1 \):
Then:
\[
y = \frac{1}{1 - x} + \frac{1}{x}
\Rightarrow \text{min at } x = \frac{1}{2},\ y = \frac{1}{1 - 1/2} + \frac{1}{1/2} = 2 + 2 = 4
\Rightarrow \boxed{4b = 4}
\]
So general result:
\[
\boxed{y_{\min} = 4b}
\]