Given that \( \mathbf{a} \cdot \mathbf{b} = 0 \), it means \( \mathbf{a} \) and \( \mathbf{b} \) are perpendicular to each other. We are also told that \( \mathbf{a} + \mathbf{b} \) makes an angle of 60° with \( \mathbf{a} \). The angle between \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} \) is 60°. Using the formula for the dot product: \[ \cos(60^\circ) = \frac{(\mathbf{a} + \mathbf{b}) \cdot \mathbf{a}}{|\mathbf{a} + \mathbf{b}| |\mathbf{a}|} \] Since \( \cos(60^\circ) = \frac{1}{2} \), we get: \[ \frac{(\mathbf{a} + \mathbf{b}) \cdot \mathbf{a}}{|\mathbf{a} + \mathbf{b}| |\mathbf{a}|} = \frac{1}{2} \] Now calculate \( (\mathbf{a} + \mathbf{b}) \cdot \mathbf{a} \): \[ (\mathbf{a} + \mathbf{b}) \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{a} = |\mathbf{a}|^2 \] because \( \mathbf{a} \cdot \mathbf{b} = 0 \). The magnitude of \( \mathbf{a} + \mathbf{b} \) is: \[ |\mathbf{a} + \mathbf{b}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2} \] Substitute these values into the dot product formula: \[ \frac{|\mathbf{a}|^2}{\sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2} |\mathbf{a}|} = \frac{1}{2} \] Simplifying: \[ \frac{|\mathbf{a}|}{\sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2}} = \frac{1}{2} \] Squaring both sides: \[ \frac{|\mathbf{a}|^2}{|\mathbf{a}|^2 + |\mathbf{b}|^2} = \frac{1}{4} \] Now, solving for \( |\mathbf{a}|^2 \) and \( |\mathbf{b}|^2 \): \[ 4 |\mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 \] \[ 3 |\mathbf{a}|^2 = |\mathbf{b}|^2 \] Thus: \[ |\mathbf{b}| = \sqrt{3} |\mathbf{a}| \]
The correct answer is (D) : \(\sqrt3|\vec{a}|=|\vec{b}|\).
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |