Given that \( \mathbf{a} \cdot \mathbf{b} = 0 \), it means \( \mathbf{a} \) and \( \mathbf{b} \) are perpendicular to each other. We are also told that \( \mathbf{a} + \mathbf{b} \) makes an angle of 60° with \( \mathbf{a} \). The angle between \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} \) is 60°. Using the formula for the dot product: \[ \cos(60^\circ) = \frac{(\mathbf{a} + \mathbf{b}) \cdot \mathbf{a}}{|\mathbf{a} + \mathbf{b}| |\mathbf{a}|} \] Since \( \cos(60^\circ) = \frac{1}{2} \), we get: \[ \frac{(\mathbf{a} + \mathbf{b}) \cdot \mathbf{a}}{|\mathbf{a} + \mathbf{b}| |\mathbf{a}|} = \frac{1}{2} \] Now calculate \( (\mathbf{a} + \mathbf{b}) \cdot \mathbf{a} \): \[ (\mathbf{a} + \mathbf{b}) \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{a} = |\mathbf{a}|^2 \] because \( \mathbf{a} \cdot \mathbf{b} = 0 \). The magnitude of \( \mathbf{a} + \mathbf{b} \) is: \[ |\mathbf{a} + \mathbf{b}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2} \] Substitute these values into the dot product formula: \[ \frac{|\mathbf{a}|^2}{\sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2} |\mathbf{a}|} = \frac{1}{2} \] Simplifying: \[ \frac{|\mathbf{a}|}{\sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2}} = \frac{1}{2} \] Squaring both sides: \[ \frac{|\mathbf{a}|^2}{|\mathbf{a}|^2 + |\mathbf{b}|^2} = \frac{1}{4} \] Now, solving for \( |\mathbf{a}|^2 \) and \( |\mathbf{b}|^2 \): \[ 4 |\mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 \] \[ 3 |\mathbf{a}|^2 = |\mathbf{b}|^2 \] Thus: \[ |\mathbf{b}| = \sqrt{3} |\mathbf{a}| \]
The correct answer is (D) : \(\sqrt3|\vec{a}|=|\vec{b}|\).
Given:
Let:
Step 1: Use the cosine formula between two vectors:
\[ \cos(60^\circ) = \frac{(\vec{a} + \vec{b}) \cdot \vec{a}}{|\vec{a} + \vec{b}||\vec{a}|} \]
Step 2: Simplify the numerator using dot product:
\[ (\vec{a} + \vec{b}) \cdot \vec{a} = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} = a^2 + 0 = a^2 \]
Step 3: Find magnitude of \(\vec{a} + \vec{b}\)
Since \(\vec{a} \perp \vec{b}\), we use: \[ |\vec{a} + \vec{b}| = \sqrt{a^2 + b^2} \]
Step 4: Plug into the cosine formula:
\[ \cos(60^\circ) = \frac{a^2}{a\sqrt{a^2 + b^2}} = \frac{1}{2} \]
Step 5: Solve:
\[ \frac{a^2}{a\sqrt{a^2 + b^2}} = \frac{1}{2} \Rightarrow \frac{a}{\sqrt{a^2 + b^2}} = \frac{1}{2} \Rightarrow 2a = \sqrt{a^2 + b^2} \]
Squaring both sides:
\[ 4a^2 = a^2 + b^2 \Rightarrow 3a^2 = b^2 \Rightarrow a = \sqrt{3}b \]
Hence,\[ |\mathbf{b}| = \sqrt{3} |\mathbf{a}| \]
Correct option: \[ |\mathbf{b}| = \sqrt{3} |\mathbf{a}| \]
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: