Question:

If \(\vec{a}.\vec{b}=0\) and \(\vec{a}+\vec{b}\) makes an angle 60° with \(\vec{a}\) then

Updated On: Apr 2, 2025
  • \(|\vec{a}|=2|\vec{b}|\)
  • \(2|\vec{a}|=|\vec{b}|\)
  • \(|\vec{a}|=\sqrt3|\vec{b}|\)
  • \(\sqrt3|\vec{a}|=|\vec{b}|\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given that \( \mathbf{a} \cdot \mathbf{b} = 0 \), it means \( \mathbf{a} \) and \( \mathbf{b} \) are perpendicular to each other. We are also told that \( \mathbf{a} + \mathbf{b} \) makes an angle of 60° with \( \mathbf{a} \). The angle between \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} \) is 60°. Using the formula for the dot product: \[ \cos(60^\circ) = \frac{(\mathbf{a} + \mathbf{b}) \cdot \mathbf{a}}{|\mathbf{a} + \mathbf{b}| |\mathbf{a}|} \] Since \( \cos(60^\circ) = \frac{1}{2} \), we get: \[ \frac{(\mathbf{a} + \mathbf{b}) \cdot \mathbf{a}}{|\mathbf{a} + \mathbf{b}| |\mathbf{a}|} = \frac{1}{2} \] Now calculate \( (\mathbf{a} + \mathbf{b}) \cdot \mathbf{a} \): \[ (\mathbf{a} + \mathbf{b}) \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{a} = |\mathbf{a}|^2 \] because \( \mathbf{a} \cdot \mathbf{b} = 0 \). The magnitude of \( \mathbf{a} + \mathbf{b} \) is: \[ |\mathbf{a} + \mathbf{b}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2} \] Substitute these values into the dot product formula: \[ \frac{|\mathbf{a}|^2}{\sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2} |\mathbf{a}|} = \frac{1}{2} \] Simplifying: \[ \frac{|\mathbf{a}|}{\sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2}} = \frac{1}{2} \] Squaring both sides: \[ \frac{|\mathbf{a}|^2}{|\mathbf{a}|^2 + |\mathbf{b}|^2} = \frac{1}{4} \] Now, solving for \( |\mathbf{a}|^2 \) and \( |\mathbf{b}|^2 \): \[ 4 |\mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 \] \[ 3 |\mathbf{a}|^2 = |\mathbf{b}|^2 \] Thus: \[ |\mathbf{b}| = \sqrt{3} |\mathbf{a}| \]

The correct answer is (D) : \(\sqrt3|\vec{a}|=|\vec{b}|\).

Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions