If \(\vec{a}\) and \(\vec{b}\) are unit vectors and \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\), then we need to find \(\sin \frac{\theta}{2}\).
Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\).
We know that \(|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{a} - 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}\).
\(|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 - 2 |\vec{a}| |\vec{b}| \cos \theta + |\vec{b}|^2\).
Since \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\), we have:
\(|\vec{a} - \vec{b}|^2 = 1 - 2 \cos \theta + 1 = 2 - 2 \cos \theta\)
\(|\vec{a} - \vec{b}|^2 = 2(1 - \cos \theta)\)
We know that \(1 - \cos \theta = 2 \sin^2(\frac{\theta}{2})\), so:
\(|\vec{a} - \vec{b}|^2 = 2(2 \sin^2(\frac{\theta}{2})) = 4 \sin^2(\frac{\theta}{2})\)
Taking the square root of both sides:
\(|\vec{a} - \vec{b}| = 2 \sin(\frac{\theta}{2})\)
\(\sin(\frac{\theta}{2}) = \frac{|\vec{a} - \vec{b}|}{2}\)
Therefore, the correct option is (C) \(\frac{|\vec{a} - \vec{b}|}{2}\).
Using the formula for the magnitude of the difference of two vectors:
$$ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}| \cos \theta. $$
Since $ |\vec{a}| = |\vec{b}| = 1 $, this simplifies to:
$$ |\vec{a} - \vec{b}|^2 = 1 + 1 - 2 \cos \theta = 2 - 2 \cos \theta = 2(1 - \cos \theta). $$
Using the trigonometric identity $ 1 - \cos \theta = 2 \sin^2 \frac{\theta}{2} $, we get:
$$ |\vec{a} - \vec{b}|^2 = 2(2 \sin^2 \frac{\theta}{2}) = 4 \sin^2 \frac{\theta}{2}. $$
Taking the square root:
$$ |\vec{a} - \vec{b}| = 2 \sin \frac{\theta}{2}. $$
Thus:
$$ \sin \frac{\theta}{2} = \frac{|\vec{a} - \vec{b}|}{2}. $$
The final answer is $ {\frac{|\vec{a} - \vec{b}|}{2}} $.
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
In the given graph, \( E_a \) for the reverse reaction will be