If \(\vec{a}\) and \(\vec{b}\) are unit vectors and \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\), then we need to find \(\sin \frac{\theta}{2}\).
Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\).
We know that \(|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{a} - 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}\).
\(|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 - 2 |\vec{a}| |\vec{b}| \cos \theta + |\vec{b}|^2\).
Since \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\), we have:
\(|\vec{a} - \vec{b}|^2 = 1 - 2 \cos \theta + 1 = 2 - 2 \cos \theta\)
\(|\vec{a} - \vec{b}|^2 = 2(1 - \cos \theta)\)
We know that \(1 - \cos \theta = 2 \sin^2(\frac{\theta}{2})\), so:
\(|\vec{a} - \vec{b}|^2 = 2(2 \sin^2(\frac{\theta}{2})) = 4 \sin^2(\frac{\theta}{2})\)
Taking the square root of both sides:
\(|\vec{a} - \vec{b}| = 2 \sin(\frac{\theta}{2})\)
\(\sin(\frac{\theta}{2}) = \frac{|\vec{a} - \vec{b}|}{2}\)
Therefore, the correct option is (C) \(\frac{|\vec{a} - \vec{b}|}{2}\).
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |