Expand the left-hand side of the given equation: \[ (A + B)^2 = A^2 + AB + BA + B^2. \]
Equating both sides: \[ A^2 + AB + BA + B^2 = A^2 + B^2. \]
Cancel \( A^2 \) and \( B^2 \): \[ AB + BA = 0. \]
Rearranging: \[ AB = -BA. \]
Therefore, the correct answer is (B) \( AB = -BA \).
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to: