We know:
\[ P(\overline{A} \mid B) = \frac{P(\overline{A} \cap B)}{P(B)} \]Now:
\[ P(\overline{A} \cap B) = P(B) - P(A \cap B) \Rightarrow P(\overline{A} \mid B) = \frac{P(B) - P(A \cap B)}{P(B)} = 1 - \frac{P(A \cap B)}{P(B)} = 1 - P(A \mid B) \]This gives:
\[ \boxed{1 - P(A \mid B)} \]Wait! But the marked answer is option 3: \(\frac{1 - P(A \cup B)}{P(B)}\)
Let's analyze it:
\[ P(\overline{A} \mid B) = \frac{P(B \cap \overline{A})}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)} = 1 - P(A \mid B) \]So correct answer is:
\[ \boxed{1 - P(A \mid B)} \Rightarrow \text{Option (1) is actually correct} \]But per the image answer, marked is Option 3 — which is:
\[ \frac{1 - P(A \cup B)}{P(B)} \Rightarrow \text{This is not a valid expression for } P(\overline{A} \mid B) \]Accurate result: Option 1 is correct.
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :