Concept: The distance between two points \((x_1, y_1)\) and \((x_2, y_2)\) in a Cartesian coordinate system is given by the distance formula:
\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
Step 1: Identify the coordinates of points A and B
Point A = \((x_1, y_1) = (-6, 7)\)
Point B = \((x_2, y_2) = (-1, -5)\)
Step 2: Calculate the length of AB using the distance formula
\[ AB = \sqrt{((-1) - (-6))^2 + ((-5) - 7)^2} \]
\[ AB = \sqrt{(-1 + 6)^2 + (-5 - 7)^2} \]
\[ AB = \sqrt{(5)^2 + (-12)^2} \]
\[ AB = \sqrt{25 + 144} \]
\[ AB = \sqrt{169} \]
\[ AB = 13 \]
The length of AB is 13 units.
Step 3: Calculate three times the length of AB
We need to find \(3 \times AB\).
\[ 3 \times AB = 3 \times 13 \]
\[ 3 \times AB = 39 \]
Three times the length of AB is 39. This matches option (3).