Given the general solution:
\[
y = Ae^x + B \cos x.
\]
We need to find the corresponding differential equation.
\bigskip
Step 1: Differentiate the given equation to find \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \)
First, differentiate \( y = Ae^x + B \cos x \) to get \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = Ae^x - B \sin x.
\]
Now, differentiate again to find \( \frac{d^2y}{dx^2} \):
\[
\frac{d^2y}{dx^2} = Ae^x - B \cos x.
\]
\bigskip
Step 2: Construct the differential equation
Now, substitute \( \frac{d^2y}{dx^2} \) and \( \frac{dy}{dx} \) into the equation:
\[
(\sin x - \cos x) \frac{d^2 y}{dx^2} + 2 \cos x \frac{dy}{dx} + (\sin x + \cos x) y = 0.
\]
Substituting the values of \( \frac{dy}{dx} \), \( \frac{d^2y}{dx^2} \), and \( y \), we get:
\[
(\sin x - \cos x)(Ae^x - B \cos x) + 2 \cos x(Ae^x - B \sin x) + (\sin x + \cos x)(Ae^x + B \cos x) = 0.
\]
This simplifies to:
\[
(\sin x - \cos x) \cdot (Ae^x - B \cos x) + 2 \cos x \cdot (Ae^x - B \sin x) + (\sin x + \cos x) \cdot (Ae^x + B \cos x) = 0.
\]
Thus, the correct differential equation is:
\[
(\sin x - \cos x) \frac{d^2 y}{dx^2} + 2 \cos x \frac{dy}{dx} + (\sin x + \cos x) y = 0.
\]
\bigskip