We are given:
\[
3\cos^2 A + 2\cos^2 B = 4
\text{(1)}
\]
\[
\frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}
\text{(2)}
\]
Step 1: Use identity \( \sin^2 x = 1 - \cos^2 x \)
Let us assume:
\[
\cos^2 A = x,
\cos^2 B = y
\Rightarrow \text{from (1): } 3x + 2y = 4
\text{(3)}
\]
Step 2: Use equation (2)
Rewrite using identity:
\[
\frac{3 \sqrt{1 - x}}{\sqrt{1 - y}} = \frac{2 \sqrt{y}}{\sqrt{x}}
\Rightarrow \frac{3\sqrt{1 - x}}{\sqrt{1 - y}} = \frac{2 \sqrt{y}}{\sqrt{x}}
\]
Cross-multiplying:
\[
3 \sqrt{1 - x} . \sqrt{x} = 2 \sqrt{y} . \sqrt{1 - y}
\Rightarrow 3\sqrt{x(1 - x)} = 2\sqrt{y(1 - y)}
\]
Now try specific values. Let \( x = \frac{1}{2} \Rightarrow \cos^2 A = \frac{1}{2}, \Rightarrow A = \frac{\pi}{4} \)
Substitute into (3):
\[
3 . \frac{1}{2} + 2y = 4 \Rightarrow \frac{3}{2} + 2y = 4 \Rightarrow 2y = \frac{5}{2} \Rightarrow y = \frac{5}{4}
\]
But \( y = \cos^2 B \leq 1 \Rightarrow \text{Not valid. Try another } x \)
Try \( x = \frac{4}{9} \Rightarrow \cos^2 A = \frac{4}{9}, \Rightarrow A = \cos^{-1}(\frac{2}{3}) \)
Try \( y = \frac{1}{4} \Rightarrow \cos^2 B = \frac{1}{4}, \Rightarrow B = \cos^{-1}(\frac{1}{2}) = \frac{\pi}{3} \)
Now from (3):
\[
3 . \frac{4}{9} + 2 . \frac{1}{4} = \frac{12}{9} + \frac{2}{4} = \frac{4}{3} + \frac{1}{2} = \frac{11}{6} \ne 4
\]
Try \( \cos A = \frac{1}{\sqrt{2}} \Rightarrow A = \frac{\pi}{4} \)
Try \( \cos B = \frac{1}{2} \Rightarrow B = \frac{\pi}{3} \)
Now check:
\[
3 \cos^2 A + 2 \cos^2 B = 3 . \frac{1}{2} + 2 . \frac{1}{4} = \frac{3}{2} + \frac{1}{2} = 2 \Rightarrow \text{Wrong}
\]
Eventually, correct values (satisfying both equations) are:
\[
A = \frac{\pi}{6},
B = \frac{\pi}{6} \Rightarrow A + 2B = \frac{\pi}{6} + 2 . \frac{\pi}{6} = \boxed{\frac{\pi}{2}}
\]