Step 1: Use the area formula for a triangle  
The area of a triangle with vertices \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \) is given by:
\[
\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
\]
  
Step 2: Substitute values  
Given points:  
\( A(a,0) \), \( B(0,0) \), \( C(0,b) \):
\[
\text{Area} = \frac{1}{2} \left| a(0 - b) + 0(b - 0) + 0(0 - 0) \right|
\]
\[
= \frac{1}{2} \left| -ab \right|
\]
\[
= \frac{1}{2} ab
\]
Thus, the correct answer is \( \frac{1}{2} ab \).