When solving vector equations involving cross products, remember to use the properties of cross products, such as \( \vec{u} \times \vec{u} = \vec{0} \) and \( \vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \). These properties simplify the problem and make it easier to solve.
The correct answer is: (C): 6
We are given the following vector equations:
\( \vec{a} + 2\vec{b} + 3\vec{c} = \vec{0} \)
\( (\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) = \lambda (\vec{b} \times \vec{c}) \)
Step 1: Express \( \vec{a} \) in terms of \( \vec{b} \) and \( \vec{c} \)
From the first equation, solve for \( \vec{a} \):
\( \vec{a} = -2\vec{b} - 3\vec{c} \)
Step 2: Substitute into the second equation
Now, substitute \( \vec{a} = -2\vec{b} - 3\vec{c} \) into the second equation:
\( (-2\vec{b} - 3\vec{c}) \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times (-2\vec{b} - 3\vec{c}) = \lambda (\vec{b} \times \vec{c}) \)
Step 3: Simplify the cross products
Now, simplify the terms involving the cross products. We know that \( \vec{u} \times \vec{u} = \vec{0} \), so \( \vec{b} \times \vec{b} = \vec{0} \) and \( \vec{c} \times \vec{c} = \vec{0} \). Therefore, we have:
\( (-2\vec{b} \times \vec{b}) - (3\vec{c} \times \vec{b}) + \vec{b} \times \vec{c} - 2(\vec{c} \times \vec{b}) - 3(\vec{c} \times \vec{c}) = \lambda (\vec{b} \times \vec{c}) \)
This simplifies to:
\( -3\vec{c} \times \vec{b} + \vec{b} \times \vec{c} - 2\vec{c} \times \vec{b} = \lambda (\vec{b} \times \vec{c}) \)
Step 4: Combine like terms
Now combine the terms involving \( \vec{c} \times \vec{b} \) and \( \vec{b} \times \vec{c} \):
\( -5\vec{c} \times \vec{b} + \vec{b} \times \vec{c} = \lambda (\vec{b} \times \vec{c}) \)
Since \( \vec{c} \times \vec{b} = -\vec{b} \times \vec{c} \), substitute this into the equation:
\( 5\vec{b} \times \vec{c} + \vec{b} \times \vec{c} = \lambda (\vec{b} \times \vec{c}) \)
Step 5: Factor the terms
Factor out \( \vec{b} \times \vec{c} \) on the left-hand side:
\( (5 + 1)(\vec{b} \times \vec{c}) = \lambda (\vec{b} \times \vec{c}) \)
Step 6: Solve for \( \lambda \)
Now, cancel out \( \vec{b} \times \vec{c} \) (assuming \( \vec{b} \times \vec{c} \neq \vec{0} \)) to get:
\( 6 = \lambda \)
Conclusion:
The value of \( \lambda \) is 6, so the correct answer is (C): 6.
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |