If \( x, y, z \) are in GP, then \( y^2 = xz \).
Let:
\[
x = a^2 + b^2,\quad y = b^2 + c^2,\quad z = a^2 + c^2
\]
Then apply the identity:
\[
(b^2 + c^2)^2 = (a^2 + b^2)(a^2 + c^2)
\]
Expanding and simplifying leads to the identity:
\[
b^2 - c^2 = \frac{a^2 - c^2}{b^2 + a^2}
\]
So the correct relation is:
\[
\boxed{b^2 - c^2 = \dfrac{a^2 - c^2}{b^2 + a^2}}
\]