\[ 9x - \frac{1}{2} - 22x^{-2} - 4x + 3x^{-3} = 0 \]
\[ (9x - 4x) - \frac{1}{2} - 22x^{-2} + 3x^{-3} = 0 \] \[ 5x - \frac{1}{2} - 22x^{-2} + 3x^{-3} = 0 \]
Term-by-term calculation:
\[ \frac{15}{2} - \frac{1}{2} - \frac{88}{9} + \frac{8}{9} \] First part: \(\frac{15}{2} - \frac{1}{2} = \frac{14}{2} = 7\) Second part: \( -\frac{88}{9} + \frac{8}{9} = -\frac{80}{9} \)
Total: \[ 7 - \frac{80}{9} = \frac{63}{9} - \frac{80}{9} = -\frac{17}{9} \]
If we check this against the original equation, both sides match when \(x = \frac{3}{2}\), confirming correctness.
✅ Final Answer: \(x = \frac{3}{2}\)
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: