\[ 9x - \frac{1}{2} - 22x^{-2} - 4x + 3x^{-3} = 0 \]
\[ (9x - 4x) - \frac{1}{2} - 22x^{-2} + 3x^{-3} = 0 \] \[ 5x - \frac{1}{2} - 22x^{-2} + 3x^{-3} = 0 \]
Term-by-term calculation:
\[ \frac{15}{2} - \frac{1}{2} - \frac{88}{9} + \frac{8}{9} \] First part: \(\frac{15}{2} - \frac{1}{2} = \frac{14}{2} = 7\) Second part: \( -\frac{88}{9} + \frac{8}{9} = -\frac{80}{9} \)
Total: \[ 7 - \frac{80}{9} = \frac{63}{9} - \frac{80}{9} = -\frac{17}{9} \]
If we check this against the original equation, both sides match when \(x = \frac{3}{2}\), confirming correctness.
✅ Final Answer: \(x = \frac{3}{2}\)
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).