Step 1: Make a suitable substitution. Define \[ u = x^2 + 2x. \] With this substitution, the given equation reduces to \[ 9^{u-3} - 4 \cdot 3^{u-2} + 27 = 0. \] Step 2: Rewrite all terms with base \(3\). Since \(9 = 3^2\), \[ 9^{u-3} = (3^2)^{u-3} = 3^{2u-6}. \] Thus, the equation becomes \[ 3^{2u-6} - 4 \cdot 3^{u-2} + 27 = 0. \] Expressing each term using powers of \(3\), \[ 3^{2u-6} = \frac{3^{2u}}{3^6}, \qquad 3^{u-2} = \frac{3^u}{3^2}. \] Substituting, \[ \frac{3^{2u}}{729} - \frac{4 \cdot 3^u}{9} + 27 = 0. \] Step 3: Convert to a quadratic equation. Let \[ y = 3^u. \] Then the equation becomes \[ \frac{y^2}{729} - \frac{4y}{9} + 27 = 0. \] Multiplying throughout by \(729\), \[ y^2 - 324y + 19683 = 0. \] Solving, \[ y = \frac{324 \pm \sqrt{324^2 - 4 \cdot 19683}}{2}. \] The discriminant is \[ 324^2 - 4 \cdot 19683 = 104976 - 78732 = 26244 = 162^2. \] Hence, \[ y = \frac{324 \pm 162}{2}. \] So, \[ y = 243 \quad \text{or} \quad y = 81. \] Step 4: Substitute back to find \(u\). Since \(y = 3^u\), \[ 3^u = 243 = 3^5 \Rightarrow u = 5, \] \[ 3^u = 81 = 3^4 \Rightarrow u = 4. \] Recall that \(u = x^2 + 2x\). Therefore, \[ x^2 + 2x = 5 \Rightarrow x^2 + 2x - 5 = 0, \] \[ x^2 + 2x = 4 \Rightarrow x^2 + 2x - 4 = 0. \] Step 5: Find the product of all possible values of \(x\). For a quadratic equation \(ax^2 + bx + c = 0\), the product of the roots is \(\frac{c}{a}\). Thus, \[ \text{Product of roots of } x^2 + 2x - 5 = 0 = -5, \] \[ \text{Product of roots of } x^2 + 2x - 4 = 0 = -4. \] Hence, the product of all possible values of \(x\) is \[ (-5)(-4) = 20. \] Therefore, the required product is \(20\).
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: