Step 1: Understanding the Question:
The values \(\alpha\) and \(\beta\) are the complex cube roots of unity, usually denoted by \(\omega\) and \(\omega^2\).
We need to simplify a large expression involving these roots.
Let \(\alpha = \omega\) and \(\beta = \omega^2\). We know the key properties: \(1+\omega+\omega^2=0\) and \(\omega^3=1\).
Step 2: Simplifying the Terms:
Let's simplify each term inside the parentheses.
Let \(T_1 = 9+7\alpha-7\beta\), \(T_2 = 9\alpha+7\beta-7\), \(T_3 = 9\beta+7-7\alpha\), and \(T_4 = 14+7\alpha+7\beta\).
\(T_2 = 9\omega + 7\omega^2 - 7 = 9\omega + 7(-1-\omega) - 7 = 9\omega - 7 - 7\omega - 7 = 2\omega - 14\).
Let's check the relationship between the terms.
Consider multiplying \(T_2\) by \(\omega\): \(\omega T_2 = \omega(2\omega - 14) = 2\omega^2 - 14\omega\).
Now let's simplify \(T_3\): \(T_3 = 9\beta + 7 - 7\alpha = 9\omega^2 + 7 - 7\omega = 9(-1-\omega) + 7 - 7\omega = -9 - 9\omega + 7 - 7\omega = -2 - 16\omega\). Let's re-evaluate \(\omega T_2 = 2\omega^2 - 14\omega = 2(-1-\omega) - 14\omega = -2 - 2\omega - 14\omega = -2 - 16\omega\).
So, we have found a crucial relation: \(T_3 = \omega T_2\).
Now let's multiply \(T_2\) by \(\omega^2\): \(\omega^2 T_2 = \omega(\omega T_2) = \omega T_3 = \omega(9\omega^2 + 7 - 7\omega) = 9\omega^3 + 7\omega - 7\omega^2 = 9(1) + 7\omega - 7\omega^2 = 9 + 7\alpha - 7\beta = T_1\). So, another crucial relation is \(T_1 = \omega^2 T_2\).
Finally, let's simplify \(T_4\): \(T_4 = 14 + 7\alpha + 7\beta = 14 + 7(\alpha+\beta) = 14 + 7(\omega+\omega^2) = 14 + 7(-1) = 7\).
Step 3: Evaluating the Expression:
The given expression is \(S = T_1^{20} + T_2^{20} + T_3^{20} + T_4^{20}\).
Substitute the relations we found: \[ S = (\omega^2 T_2)^{20} + (T_2)^{20} + (\omega T_2)^{20} + T_4^{20} \] \[ S = \omega^{40} T_2^{20} + T_2^{20} + \omega^{20} T_2^{20} + T_4^{20} \] \[ S = T_2^{20} (\omega^{40} + 1 + \omega^{20}) + T_4^{20} \] We simplify the powers of \(\omega\): \(\omega^{40} = (\omega^3)^{13} \cdot \omega = 1^{13} \cdot \omega = \omega\).
\(\omega^{20} = (\omega^3)^6 \cdot \omega^2 = 1^6 \cdot \omega^2 = \omega^2\).
So, the term in the parenthesis is \(\omega + 1 + \omega^2\), which is equal to 0. \[ S = T_2^{20} (0) + T_4^{20} = T_4^{20} \]
Step 4: Final Answer:
We found that \(T_4 = 7\). So, the expression \(S = 7^{20}\).
We are given that \(S = m^{10}\). \[ m^{10} = 7^{20} = (7^2)^{10} = 49^{10} \] Therefore, \(m = 49\).
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.