Question:

If \((9+7\alpha-7\beta)^{20} + (9\alpha+7\beta-7)^{20} + (9\beta+7-7\alpha)^{20} + (14+7\alpha+7\beta)^{20}\) is \(m^{10}\) then the value of m is : (where \(\alpha = \frac{-1+i\sqrt{3}}{2}\) \& \(\beta = \frac{-1-i\sqrt{3}}{2}\))

Show Hint

In problems involving sums of powers of expressions with cube roots of unity, look for symmetric relations. Check if the terms are related by multiplication of \(\omega\) or \(\omega^2\). This often leads to a massive simplification using the property \(1+\omega+\omega^2=0\).
Updated On: Jan 22, 2026
  • 50
  • 49
  • 46
  • 48
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Understanding the Question: 
The values \(\alpha\) and \(\beta\) are the complex cube roots of unity, usually denoted by \(\omega\) and \(\omega^2\).
We need to simplify a large expression involving these roots. 
Let \(\alpha = \omega\) and \(\beta = \omega^2\). We know the key properties: \(1+\omega+\omega^2=0\) and \(\omega^3=1\). 

Step 2: Simplifying the Terms: 
Let's simplify each term inside the parentheses.
Let \(T_1 = 9+7\alpha-7\beta\), \(T_2 = 9\alpha+7\beta-7\), \(T_3 = 9\beta+7-7\alpha\), and \(T_4 = 14+7\alpha+7\beta\). 

\(T_2 = 9\omega + 7\omega^2 - 7 = 9\omega + 7(-1-\omega) - 7 = 9\omega - 7 - 7\omega - 7 = 2\omega - 14\). 
Let's check the relationship between the terms.
Consider multiplying \(T_2\) by \(\omega\): \(\omega T_2 = \omega(2\omega - 14) = 2\omega^2 - 14\omega\).
Now let's simplify \(T_3\): \(T_3 = 9\beta + 7 - 7\alpha = 9\omega^2 + 7 - 7\omega = 9(-1-\omega) + 7 - 7\omega = -9 - 9\omega + 7 - 7\omega = -2 - 16\omega\). Let's re-evaluate \(\omega T_2 = 2\omega^2 - 14\omega = 2(-1-\omega) - 14\omega = -2 - 2\omega - 14\omega = -2 - 16\omega\).
So, we have found a crucial relation: \(T_3 = \omega T_2\). 
Now let's multiply \(T_2\) by \(\omega^2\): \(\omega^2 T_2 = \omega(\omega T_2) = \omega T_3 = \omega(9\omega^2 + 7 - 7\omega) = 9\omega^3 + 7\omega - 7\omega^2 = 9(1) + 7\omega - 7\omega^2 = 9 + 7\alpha - 7\beta = T_1\). So, another crucial relation is \(T_1 = \omega^2 T_2\). 
Finally, let's simplify \(T_4\): \(T_4 = 14 + 7\alpha + 7\beta = 14 + 7(\alpha+\beta) = 14 + 7(\omega+\omega^2) = 14 + 7(-1) = 7\). 
Step 3: Evaluating the Expression: 
The given expression is \(S = T_1^{20} + T_2^{20} + T_3^{20} + T_4^{20}\). 
Substitute the relations we found: \[ S = (\omega^2 T_2)^{20} + (T_2)^{20} + (\omega T_2)^{20} + T_4^{20} \] \[ S = \omega^{40} T_2^{20} + T_2^{20} + \omega^{20} T_2^{20} + T_4^{20} \] \[ S = T_2^{20} (\omega^{40} + 1 + \omega^{20}) + T_4^{20} \] We simplify the powers of \(\omega\): \(\omega^{40} = (\omega^3)^{13} \cdot \omega = 1^{13} \cdot \omega = \omega\). 
\(\omega^{20} = (\omega^3)^6 \cdot \omega^2 = 1^6 \cdot \omega^2 = \omega^2\). 
So, the term in the parenthesis is \(\omega + 1 + \omega^2\), which is equal to 0. \[ S = T_2^{20} (0) + T_4^{20} = T_4^{20} \] 
Step 4: Final Answer: 
We found that \(T_4 = 7\). So, the expression \(S = 7^{20}\). 
We are given that \(S = m^{10}\). \[ m^{10} = 7^{20} = (7^2)^{10} = 49^{10} \] Therefore, \(m = 49\). 
 

Was this answer helpful?
0
0

Top Questions on Complex numbers

View More Questions