Step 1: Let \( \cos\theta = x \) and \( \sin\theta = y \).
Then from the identity \( x^2 + y^2 = 1 \).
Also given:
\[
7x - y = 5 \tag{1}
\]
Step 2: From identity:
\[
x^2 + y^2 = 1 \tag{2}
\]
Step 3: Solve equation (1) for \( y \):
\[
y = 7x - 5
\]
Substitute into (2):
\[
x^2 + (7x - 5)^2 = 1
\]
\[
x^2 + 49x^2 - 70x + 25 = 1
\Rightarrow 50x^2 - 70x + 24 = 0
\]
Step 4: Solve the quadratic:
\[
x = \dfrac{70 \pm \sqrt{(-70)^2 - 4 \cdot 50 \cdot 24}}{2 \cdot 50}
= \dfrac{70 \pm \sqrt{4900 - 4800}}{100}
= \dfrac{70 \pm 10}{100}
\Rightarrow x = \dfrac{80}{100} = \dfrac{4}{5}, \quad \text{or} \quad \dfrac{60}{100} = \dfrac{3}{5}
\]
Step 5: Use both values of \( x \) to get corresponding \( y \):
If \( x = \dfrac{4}{5} \), then
\[
y = 7 \cdot \dfrac{4}{5} - 5 = \dfrac{28 - 25}{5} = \dfrac{3}{5}
\Rightarrow \tan\theta = \dfrac{y}{x} = \dfrac{3}{4}
\]
If \( x = \dfrac{3}{5} \), then
\[
y = 7 \cdot \dfrac{3}{5} - 5 = \dfrac{21 - 25}{5} = -\dfrac{4}{5}
\Rightarrow \tan\theta = \dfrac{-4}{3} \quad (\text{not allowed})
\]
Only valid value: \( \tan\theta = \dfrac{3}{4} \)