5 - log10 \(\sqrt{1+x}+4\,log_{10}\sqrt1-x=\,log_{10}\frac{1}{\sqrt1-x^2}\)
5 - log10 \(\sqrt{1+x}+4\,log_{10}\sqrt1-x=\,log_{10}(\frac{1}{\sqrt1-x^2}\frac{1}{\sqrt1-x})\)
5 log10 \(\sqrt{1+x}+4\,log_{10}\sqrt1-x=\,log_{10}\sqrt1-x=-log\sqrt1-x.log_{10}\sqrt{1+x}\)
4 log10 \(\sqrt{1-x}+\,log_{10}\sqrt1-x=-5\)
log10 \(\sqrt{1-x}=-1\)
\(\sqrt{1-x=\frac{1}{10}}\)
100x = 99.
Therefore the answer should be 99.