Step 1: Finding \( f(x) \)
Assume \( f(x) = ax + b \). Substituting:
\[
3(ax + b) - 2(a/x + b) = x.
\]
Expanding and equating coefficients:
\[
3ax + 3b - 2a/x - 2b = x.
\]
Solving, we get:
\[
a = \frac{1}{2}, \quad b = 0.
\]
Thus,
\[
f(x) = \frac{x}{2}.
\]
Step 2: Finding \( f'(x) \)
\[
f'(x) = \frac{1}{2}, \quad f'(2) = \frac{1}{2}.
\]