The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The inverses of exponential functions are the logarithmic functions. The exponential function is y = ax and its inverse is x = ay. The logarithmic function y = logax is derived as the equivalent to the exponential equation x = ay. y = logax only under the following conditions: x = ay, (where, a > 0, and a≠1). In totality, it is called the logarithmic function with base a.
The domain of a logarithmic function is real numbers greater than 0, and the range is real numbers. The graph of y = logax is symmetrical to the graph of y = ax w.r.t. the line y = x. This relationship is true for any of the exponential functions and their inverse.
Exponential functions have the formation as:
f(x)=bx
where,
b = the base
x = the exponent (or power)