Step 1: Given information.
We are given $3 \tan A = 4 \Rightarrow \tan A = \dfrac{4}{3}$. Step 2: Use trigonometric identity.
We know that:
\[
1 + \tan^2 A = \sec^2 A
\]
Substitute $\tan A = \dfrac{4}{3}$:
\[
1 + \left(\dfrac{4}{3}\right)^2 = \sec^2 A
\]
\[
1 + \dfrac{16}{9} = \sec^2 A
\]
\[
\sec^2 A = \dfrac{25}{9}
\]
\[
\sec A = \dfrac{5}{3}
\]
Step 3: Conclusion.
Hence, $\sec A = \dfrac{5}{3}$.
Correction: The correct option is (D) $\dfrac{5}{3}$.