Step 1: Let \(\sin^2 x = a\), then \(\cos^2 x = 1 - a\).
\[
\sin^4 x = a^2,\quad \cos^4 x = (1 - a)^2
\]
Substitute into the given equation:
\[
3a^2 + 2(1 - a)^2 = \frac{6}{5}
\]
Step 2: Expand and simplify.
\[
3a^2 + 2(1 - 2a + a^2) = \frac{6}{5}
\]
\[
3a^2 + 2 - 4a + 2a^2 = \frac{6}{5}
\]
\[
5a^2 - 4a + 2 = \frac{6}{5}
\]
Step 3: Multiply through by 5 to eliminate denominator.
\[
25a^2 - 20a + 10 = 6 \quad \Rightarrow \quad 25a^2 - 20a + 4 = 0
\]
Step 4: Solve the quadratic equation.
\[
a = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 25 \cdot 4}}{2 \cdot 25} = \frac{20 \pm \sqrt{400 - 400}}{50} = \frac{20}{50} = \frac{2}{5}
\]
So, \(\sin^2 x = \frac{2}{5}\), and since \(x\) is acute, \(\sin x = \sqrt{\frac{2}{5}}\), \(\cos x = \sqrt{1 - \frac{2}{5}} = \sqrt{\frac{3}{5}}\)
Step 5: Use identity for \(\tan 2x\):
\[
\tan 2x = \frac{2 \tan x}{1 - \tan^2 x},\quad \tan x = \frac{\sin x}{\cos x} = \sqrt{\frac{2}{3}}
\]
Step 6: Substitute in the identity.
\[
\tan 2x = \frac{2 \cdot \sqrt{\frac{2}{3}}}{1 - \frac{2}{3}} = \frac{2 \cdot \sqrt{\frac{2}{3}}}{\frac{1}{3}} = 6 \cdot \sqrt{\frac{2}{3}} = \sqrt{6} \cdot 2 = 2\sqrt{6}
\]