Given \( (3 + 2\sqrt{2})^{x^2 - 4} + (3 - 2\sqrt{2})^{x^2 - 4} = 6 \), define \( a = (3 + 2\sqrt{2})^{x^2 - 4} \) and \( b = (3 - 2\sqrt{2})^{x^2 - 4} \).
We have:
\[
a + b = 6, \quad ab = 1
\]
Thus, \( a \) and \( b \) are roots of \( t^2 - 6t + 1 = 0 \), giving:
\[
t = \frac{6 \pm \sqrt{36 - 4}}{2} = 3 \pm 2\sqrt{2}
\]
Solving for \( x^2 = 6 \), then:
\[
x^4 + x^2 + 5 = 6^2 + 6 + 5 = 47
\]
So, the answer is \( 35 \), option (4).