Given the equation: \(2x^y + 3y^x = 20\). We need to find \(\frac{dy}{dx}\) at \((2,2)\). Differentiating both sides with respect to \(x\): \[ 2 \frac{d}{dx}(x^y) + 3 \frac{d}{dx}(y^x) = 0. \] Using the product rule and chain rule: \[ 2x^y \left( \frac{y}{x} + \ln(x) \frac{dy}{dx} \right) + 3y^x \left( \frac{x}{y} \frac{dy}{dx} + \ln(y) \right) = 0. \] Substituting \(x = 2\) and \(y = 2\): \[ 8 \left( \frac{1}{2} + \ln(2) \frac{dy}{dx} \right) + 12 \left( \frac{1}{2} \frac{dy}{dx} + \ln(2) \right) = 0. \] Simplify and solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = - \frac{2 + \ln(8)}{3 + \ln(4)}. \] ✅ Therefore, \(\boldsymbol{\frac{dy}{dx} = - \frac{2 + \ln(8)}{3 + \ln(4)}}\).
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)