Given the equation: \(2x^y + 3y^x = 20\). We need to find \(\frac{dy}{dx}\) at \((2,2)\). Differentiating both sides with respect to \(x\): \[ 2 \frac{d}{dx}(x^y) + 3 \frac{d}{dx}(y^x) = 0. \] Using the product rule and chain rule: \[ 2x^y \left( \frac{y}{x} + \ln(x) \frac{dy}{dx} \right) + 3y^x \left( \frac{x}{y} \frac{dy}{dx} + \ln(y) \right) = 0. \] Substituting \(x = 2\) and \(y = 2\): \[ 8 \left( \frac{1}{2} + \ln(2) \frac{dy}{dx} \right) + 12 \left( \frac{1}{2} \frac{dy}{dx} + \ln(2) \right) = 0. \] Simplify and solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = - \frac{2 + \ln(8)}{3 + \ln(4)}. \] ✅ Therefore, \(\boldsymbol{\frac{dy}{dx} = - \frac{2 + \ln(8)}{3 + \ln(4)}}\).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.