Step 1: We know that:
\[
2x + 3y = 15 \quad \text{(1)}, \quad xy = 6 \quad \text{(2)}
\]
We want $x^2 + y^2$.
Recall the identity:
\[
x^2 + y^2 = (x + y)^2 - 2xy
\]
So, if we find $x + y$, we can get $x^2 + y^2$ easily.
Step 2: Find $x + y$ and $x - y$ relation.
From (1):
\[
2x + 3y = 15
\]
Divide through by $1$ is not useful, so instead we try to get $x + y$.
Let us write $x$ from (1):
\[
2x = 15 - 3y \quad \Rightarrow \quad x = \frac{15 - 3y}{2}
\]
Step 3: Use $xy = 6$ to get $y$.
Substitute $x = \frac{15 - 3y}{2}$ into $xy = 6$:
\[
\frac{15 - 3y}{2} \cdot y = 6
\]
\[
15y - 3y^2 = 12
\]
\[
-3y^2 + 15y - 12 = 0
\]
Multiply by $-1$:
\[
3y^2 - 15y + 12 = 0
\]
Divide through by $3$:
\[
y^2 - 5y + 4 = 0
\]
Factorise:
\[
(y - 4)(y - 1) = 0
\]
So:
\[
y = 4 \quad \text{or} \quad y = 1
\]
Step 4: Find $x$ for each case.
If $y = 4$:
From (1): $2x + 3(4) = 15$
$2x + 12 = 15 \quad \Rightarrow \quad 2x = 3 \quad \Rightarrow \quad x = \frac{3}{2}$
If $y = 1$:
From (1): $2x + 3(1) = 15$
$2x + 3 = 15 \quad \Rightarrow \quad 2x = 12 \quad \Rightarrow \quad x = 6$
Step 5: Find $x^2 + y^2$.
Case 1: $(x, y) = \left(\frac{3}{2}, 4\right)$
\[
x^2 + y^2 = \left(\frac{3}{2}\right)^2 + (4)^2 = \frac{9}{4} + \frac{64}{4} = \frac{73}{4}
\]
Case 2: $(x, y) = (6, 1)$
\[
x^2 + y^2 = (6)^2 + (1)^2 = 36 + 1 = 37
\]
Final Answer:
\[
\boxed{\frac{73}{4} \ \text{or} \ 37}
\]
Both answers are possible depending on which pair $(x, y)$ satisfies the given equations.