Step 1: Implicit Differentiation.
Differentiating both sides with respect to \( x \):
\[
\frac{d}{dx} \left( 2x^2 - 3xy + 4y^2 + 2x - 3y + 4 \right) = 0
\]
Using the product rule for \( -3xy \):
\[
4x - 3(y + x \frac{dy}{dx}) + 8y \frac{dy}{dx} + 2 - 3 \frac{dy}{dx} = 0
\]
Step 2: Solve for \( \frac{dy}{dx} \).
\[
(4x + 2) - 3y - 3x \frac{dy}{dx} + 8y \frac{dy}{dx} - 3 \frac{dy}{dx} = 0
\]
\[
4x + 2 - 3y = (3x - 8y + 3) \frac{dy}{dx}
\]
Substituting \( (x, y) = (3,2) \):
\[
(4(3) + 2 - 3(2)) = (3(3) - 8(2) + 3) \frac{dy}{dx}
\]
\[
(12 + 2 - 6) = (9 - 16 + 3) \frac{dy}{dx}
\]
\[
8 = (-4) \frac{dy}{dx}
\]
\[
\frac{dy}{dx} = -2
\]
Thus, the required derivative is:
\[
\mathbf{-2}
\]