If 2nC3 : nC3 = 10, then \(\frac{n^{2}+3n}{n^{2}-3n+4}\) is equal to
\(\frac{^{2n}C_{3}}{^{n}C_{3}}=10\Rightarrow \frac{2n.(2n-1).(2n-2)}{n.(n-1)(n-2)}\)
\(\Rightarrow \frac{(2n-1).2}{n-2}\)
\(\Rightarrow n=8\)
Therefore, \(\frac{n^{2}+3n}{n^{2}-3n+4}\) = \(\frac{88}{44}\) = 2
The answer is 2
Given:
\[ \frac{{^{2n}C_3}}{{^nC_3}} = 10 \] Breaking down the formula:
\[ \frac{\frac{(2n)!}{3!(2n - 3)!}}{\frac{n!}{3!(n - 3)!}} = \frac{(2n)! / (2n - 3)!}{n! / (n - 3)!} \] Simplifying:
\[ \frac{2n(2n - 1)(2n - 2)}{n(n - 1)(n - 2)} = 10 \] Further Simplification:
\[ \frac{4(2n - 1)}{n - 2} = 10 \] Solving:
\[ 4(2n - 1) = 10(n - 2) \\ 8n - 4 = 10n - 20 \\ 2n = 16 \\ n = 8 \] Finding the ratio:
\[ \text{Ratio} = \frac{n^2 + 3n}{n^2 - 3n + 4} \] Substituting \( n = 8 \): \[ = \frac{8^2 + 3(8)}{8^2 - 3(8) + 4} = \frac{64 + 24}{64 - 24 + 4} = \frac{88}{44} = 2 \]
Let \( a_1, a_2, a_3, \ldots \) be in an A.P. such that \[ \sum_{k=1}^{12} a_{2k-1} = -\frac{72}{5} a_1, \quad a_1 \neq 0. \] If \[ \sum_{k=1}^{n} a_k = 0, \] then \( n \) is:
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
Permutation is the method or the act of arranging members of a set into an order or a sequence.
Combination is the method of forming subsets by selecting data from a larger set in a way that the selection order does not matter.