Given the sum of the arithmetic sequence: \[ (2n + 1) + (2n + 3) + (2n + 5) + \ldots + (2n + 47) = 5280 \] Find the value of \( n \), and then compute: \[ 1 + 2 + 3 + \ldots + n \]
This is an arithmetic sequence with:
To find the number of terms \( m \), we use the formula: \[ \text{Last term} = a + (m - 1)d \] Plugging in: \[ 2n + 47 = (2n + 1) + (m - 1) \cdot 2 \Rightarrow 2n + 47 = 2n + 1 + 2m - 2 \Rightarrow 2m = 48 \Rightarrow m = 24 \]
Sum of the arithmetic sequence is: \[ S = \frac{m}{2} \cdot (\text{First term} + \text{Last term}) \Rightarrow S = \frac{24}{2} \cdot \left( (2n + 1) + (2n + 47) \right) \Rightarrow 12 \cdot (4n + 48) = 5280 \] Simplifying: \[ 48(n + 12) = 5280 \Rightarrow n + 12 = 110 \Rightarrow n = 98 \]
Now that \( n = 98 \), compute: \[ 1 + 2 + 3 + \ldots + 98 = \frac{98 \cdot 99}{2} = 4851 \]
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: