We are given the inequality:
\[
(2k - 1)x^2 - 2(3k - 2)x + 4k>0 \quad \text{for all} \quad x \in \mathbb{R}.
\]
Step 1: For a quadratic expression \( ax^2 + bx + c>0 \) to be positive for all real \( x \), the following conditions must be satisfied:
- The leading coefficient \( a>0 \),
- The discriminant \( D = b^2 - 4ac<0 \).
Step 2: Let us identify \( a, b, c \):
\[
a = 2k - 1, \quad b = -2(3k - 2) = -6k + 4, \quad c = 4k.
\]
Now compute the discriminant:
\[
D = b^2 - 4ac = (-6k + 4)^2 - 4(2k - 1)(4k).
\]
Step 3: Simplify the expression:
\[
D = (36k^2 - 48k + 16) - 32k(2k - 1).
\]
\[
= 36k^2 - 48k + 16 - (64k^2 - 32k).
\]
\[
= (36k^2 - 64k^2) + (-48k + 32k) + 16 = -28k^2 - 16k + 16.
\]
So,
\[
D<0 \quad \Rightarrow \quad -28k^2 - 16k + 16<0.
\]
Step 4: Solve the inequality:
\[
28k^2 + 16k - 16>0.
\]
Divide throughout by 4:
\[
7k^2 + 4k - 4>0.
\]
Find the roots of the corresponding quadratic:
\[
k = \frac{-4 \pm \sqrt{16 + 112}}{14} = \frac{-4 \pm \sqrt{128}}{14} = \frac{-4 \pm 8\sqrt{2}}{14}.
\]
\[
k = \frac{-2 \pm 4\sqrt{2}}{7}.
\]
So the inequality is satisfied when:
\[
k<\frac{-2 - 4\sqrt{2}}{7} \quad \text{or} \quad k>\frac{-2 + 4\sqrt{2}}{7}.
\]
Approximate \( \frac{-2 + 4\sqrt{2}}{7} \approx \frac{-2 + 5.656}{7} = \frac{3.656}{7} \approx 0.522 \).
Step 5: Also need \( a = 2k - 1>0 \Rightarrow k>\frac{1}{2} \).
So overall condition:
\[
k>\max\left(\frac{1}{2}, \frac{-2 + 4\sqrt{2}}{7}\right) \approx 0.522.
\]
Hence, the integral values of \( k \) satisfying all conditions are:
\[
k = 1, 2, 3, 4, 5, 6, 7.
\]
\[
\text{Sum} = 1 + 2 + 3 + 4 + 5 + 6 + 7 = \boxed{28}.
\]