To find the value of \(\cot \theta\) given \(\frac{(2 \sin \theta - \cos \theta)}{(\cos \theta + \sin \theta)} = 1\), we start by equating the given expression to 1:
\(\frac{2 \sin \theta - \cos \theta}{\cos \theta + \sin \theta} = 1\)
Cross-multiplying gives us:
\(2 \sin \theta - \cos \theta = \cos \theta + \sin \theta\)
Rearrange terms to isolate sine and cosine terms:
\(2 \sin \theta - \sin \theta = \cos \theta + \cos \theta\)
Simplify to:
\(\sin \theta = 2 \cos \theta\)
We know that \(\cot \theta = \frac{\cos \theta}{\sin \theta}\). Substitute \(\sin \theta = 2 \cos \theta\):
\(\cot \theta = \frac{\cos \theta}{2 \cos \theta}\)
Simplify to find:
\(\cot \theta = \frac{1}{2}\)
Therefore, the value of \(\cot \theta\) is \(\frac{1}{2}\).
The given graph illustrates: