We are given the following equation:
\[
\frac{(2n+1)P_{n-1}}{2nP_n} = \frac{11}{21}.
\]
Step 1:
We know that the permutation formula is \( nP_r = \frac{n!}{(n-r)!} \). Therefore:
\[
(2n+1)P_{n-1} = \frac{(2n+1)!}{(2n+1-(n-1))!} = \frac{(2n+1)!}{n!},
\]
\[
2nP_n = \frac{(2n)!}{(2n-n)!} = \frac{(2n)!}{n!}.
\]
Step 2:
Now, substitute these expressions into the given equation:
\[
\frac{\frac{(2n+1)!}{n!}}{\frac{(2n)!}{n!}} = \frac{11}{21}.
\]
Simplifying:
\[
\frac{(2n+1)!}{(2n)!} = \frac{11}{21}.
\]
\[
\frac{(2n+1)(2n)!}{(2n)!} = \frac{11}{21} \quad \Rightarrow \quad (2n+1) = \frac{11}{21}.
\]
Step 3:
Solving for \( n \), we get:
\[
2n + 1 = 5 \quad \Rightarrow \quad 2n = 4 \quad \Rightarrow \quad n = 5.
\]
Step 4:
Now, substitute \( n = 5 \) into the expression \( n^2 + n + 15 \):
\[
n^2 + n + 15 = 5^2 + 5 + 15 = 25 + 5 + 15 = 45.
\]
Thus, \( n^2 + n + 15 = 45 \).