Step 1: Understanding the formula for surface energy.
The surface energy is given by:
\[
U = {Surface Tension} \times {Surface Area}
\]
For a sphere, surface area is:
\[
A = 4\pi R^2
\]
Step 2: Calculate initial total surface area.
- Given 1000 small droplets, each of radius \( r = 1 \) mm.
- Total surface area before merging:
\[
A_{{initial}} = 1000 \times 4\pi r^2
\]
\[
A_{{initial}} = 1000 \times 4 \times \frac{22}{7} \times (1 \times 10^{-3})^2
\]
\[
A_{{initial}} = 1000 \times 4 \times \frac{22}{7} \times 10^{-6}
\]
\[
A_{{initial}} = \frac{88000}{7} \times 10^{-6}
\]
\[
A_{{initial}} \approx 12.57 \times 10^{-3} { m}^2
\]
Step 3: Calculate final surface area.
The final drop has a total volume equal to the sum of all small drops:
\[
\frac{4}{3} \pi R^3 = 1000 \times \frac{4}{3} \pi r^3
\]
Cancelling \( \frac{4}{3} \pi \) from both sides:
\[
R^3 = 1000 r^3
\]
\[
R = 10r = 10 \times 1 { mm} = 10 { mm} = 10^{-2} { m}
\]
Final surface area:
\[
A_{{final}} = 4\pi R^2
\]
\[
A_{{final}} = 4 \times \frac{22}{7} \times (10^{-2})^2
\]
\[
A_{{final}} = 4 \times \frac{22}{7} \times 10^{-4}
\]
\[
A_{{final}} = \frac{880}{7} \times 10^{-6}
\]
\[
A_{{final}} \approx 1.257 \times 10^{-3} { m}^2
\]
Step 4: Compute the released surface energy.
Change in surface area:
\[
\Delta A = A_{{initial}} - A_{{final}}
\]
\[
\Delta A = (12.57 - 1.257) \times 10^{-3}
\]
\[
\Delta A = 11.313 \times 10^{-3} { m}^2
\]
Energy released:
\[
\Delta U = {Surface Tension} \times \Delta A
\]
\[
\Delta U = (0.07) \times (11.313 \times 10^{-3})
\]
\[
\Delta U = 7.92 \times 10^{-4} { J}
\]
Final Answer:
\[
\boxed{7.92 \times 10^{-4} { J}}
\]