Step 1: Calculate the cube of \( 16 \times 10^{-4} \).
Since \( 16 = 2^4 \), we have:
\[
(16 \times 10^{-4})^3 = (2^4 \times 10^{-4})^3 = 2^{12} \times 10^{-12} = 4096 \times 10^{-12}
\]
Step 2: Simplify the denominator.
\( 2^{19} \times 10^{-11} = 524288 \times 10^{-11} \)
Step 3: Set up the fraction and simplify.
\[
\frac{128 \times 4096 \times 10^{-12}}{524288 \times 10^{-11}} = \frac{524288 \times 10^{-12}}{524288 \times 10^{-11}} = \frac{10^{-12}}{10^{-11}} = 10^{-1}
\]
Step 4: Solve for \( k \).
\[
10^k = 10^{-1}
\]
Hence, \( k = -1 \).