Question:

If $ (1+x+x^2)^n = a_o +a_1x +a_2x^2 +.....+a_{2n} x^{2n}, $ then $ a_o+a_3+a_6+.....= $

Updated On: Jun 14, 2022
  • $ 3^{n+1} $
  • $ 3^{n} $
  • $ 3^{n-1} $
  • $None\, of\, these$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given, $\left(1+x+x^{2}\right)^{n} =a_{0}+a_{1}x +a_{2}x^{2}$
$+a_{3}x^{3}+\ldots+a_{zn} x^{2n}$
$\left(1+x+x^{2}\right)^{n} =\left(a_{0}+a_{3}x^{6}+a_{9}x^{9}+\ldots\right)$
$+x\left(a_{1}+a_{4}x^{3}+a_{7}x^{6}+\ldots\right)+x^{2}\left(a_{2}+a_{5}x^{3}+a_{8}x^{6}+\ldots\right)$
Let $E_{1}=a_{0}+a_{3}+a_{9}+\ldots$
$E_{2}=a_{1}+a_{4}+a_{7}+\ldots$
and $E_{3}=a_{2}+a_{5}+a_{8}+\ldots$
put $x=1, \omega, \omega^{2}$ respectively, we get
$\left(1+1+1\right)^{n} =E_{1}+E_{2}+E_{3} $
$\Rightarrow 3^{n}=E_{1}+E_{2}+E_{3} \ldots\left(i\right)$
$\left(1+\omega+\omega^{2}\right)^{n} =E_{1}+\omega\,E_{2}+\omega^{2}E_{3}$
$\Rightarrow 0=E_{1}+\omega\, E_{2}+\omega^{2}E_{3} \ldots\left(ii\right)$
and $\left(1+\omega^{2}+\omega^{4}\right)^{n} =E_{1}+\omega^{2}E_{2}+\omega^{4}E_{3}$
$\Rightarrow 0=E_{1}+\omega^{2}E_{2}+\omega\,E_{3} \ldots\left(iii\right)$
On adding Eqs. $\left(i\right)$, $\left(ii\right)$ and $\left(iii\right)$, we get
$3^{n}=3E_{1}+\left(1+\omega+\omega^{2}\right)E_{2}+\left(1+\omega^{2}+\omega\right)E_{3}$
$\Rightarrow 3^{n}=3E_{1}+0+0$
$\Rightarrow E_{1}=3^{n-1}$
Was this answer helpful?
0
0

Concepts Used:

Complex Numbers and Quadratic Equations

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that i² = 1. So, for every equation which does not have a real solution we can use i = -1.

Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b and c are the real numbers.