We are given the equation:
\[
1 + \sqrt{1 + a} = (1 + \sqrt{1 - a}) \cot \alpha
\]
First, solve for \( \cot \alpha \):
\[
\cot \alpha = \frac{1 + \sqrt{1 + a}}{1 + \sqrt{1 - a}}
\]
Using the identity \( \cot^2 \alpha = \csc^2 \alpha - 1 \), we can substitute into the formula for \( \sin 4\alpha \) using the standard identity for the sine of a multiple angle:
\[
\sin 4\alpha = 4 \sin \alpha \cos \alpha
\]
After solving for \( \sin \alpha \) and \( \cos \alpha \) from the given equation, we find that:
\[
\sin 4\alpha = a
\]
Thus, the correct answer is \( a \), which corresponds to option (1).