We are given that \(1, \omega, \omega^2\) are the cube roots of unity. This means:
1. \( \omega^3 = 1 \)
2. \( 1 + \omega + \omega^2 = 0 \)
Let's analyze the general term in the series. The \(k\)-th term (starting from \(k=1\)) looks like:
\( k \left( (k+1) + \frac{1}{\omega} \right) \left( (k+1) + \frac{1}{\omega^2} \right) \)
Let's simplify the product \( \left( (k+1) + \frac{1}{\omega} \right) \left( (k+1) + \frac{1}{\omega^2} \right) \).
This is in the form \((A+B)(A+C)\) where \(A = (k+1)\), \(B = \frac{1}{\omega}\), \(C = \frac{1}{\omega^2}\).
The product is \( (k+1)^2 + (k+1)\left(\frac{1}{\omega} + \frac{1}{\omega^2}\right) + \frac{1}{\omega \cdot \omega^2} \)
We know \( \frac{1}{\omega} = \frac{\omega^2}{\omega^3} = \omega^2 \) and \( \frac{1}{\omega^2} = \frac{\omega}{\omega^3} = \omega \).
Also, \( \frac{1}{\omega \cdot \omega^2} = \frac{1}{\omega^3} = \frac{1}{1} = 1 \).
And \( \frac{1}{\omega} + \frac{1}{\omega^2} = \omega^2 + \omega \).
Since \( 1 + \omega + \omega^2 = 0 \), we have \( \omega + \omega^2 = -1 \).
Substitute these values back into the product:
\( (k+1)^2 + (k+1)(-1) + 1 \)
\( (k+1)^2 - (k+1) + 1 \)
Let \(m = k+1\). Then the expression is \( m^2 - m + 1 \).
So the \(k\)-th term of the series is \( k ( (k+1)^2 - (k+1) + 1 ) \).
Let \( T_k = k( (k+1)^2 - (k+1) + 1 ) \).
The series has 10 terms, so we need to find \( \sum_{k=1}^{10} T_k \).
For \(k=1\), the term is \( 1 \left( (1+1)^2 - (1+1) + 1 \right) = 1 (2^2 - 2 + 1) = 1(4 - 2 + 1) = 3 \).
For \(k=2\), the term is \( 2 \left( (2+1)^2 - (2+1) + 1 \right) = 2 (3^2 - 3 + 1) = 2(9 - 3 + 1) = 2(7) = 14 \).
For \(k=3\), the term is \( 3 \left( (3+1)^2 - (3+1) + 1 \right) = 3 (4^2 - 4 + 1) = 3(16 - 4 + 1) = 3(13) = 39 \).
The sum is \( S = \sum_{k=1}^{10} k((k+1)^2 - (k+1) + 1) \)
\( S = \sum_{k=1}^{10} k(k^2 + 2k + 1 - k - 1 + 1) \)
\( S = \sum_{k=1}^{10} k(k^2 + k + 1) \)
\( S = \sum_{k=1}^{10} (k^3 + k^2 + k) \)
We use the sum formulas:
\( \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \)
\( \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \)
\( \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2 \)
For \( n=10 \):
\( \sum_{k=1}^{10} k = \frac{10(10+1)}{2} = \frac{10 \times 11}{2} = 5 \times 11 = 55 \)
\( \sum_{k=1}^{10} k^2 = \frac{10(10+1)(2 \times 10+1)}{6} = \frac{10 \times 11 \times 21}{6} = \frac{2310}{6} = 385 \)
\( \sum_{k=1}^{10} k^3 = \left(\frac{10(10+1)}{2}\right)^2 = (55)^2 = 3025 \)
Now, sum them up:
\( S = 3025 + 385 + 55 \)
\( S = 3410 + 55 \)
\( S = 3465 \)