Given the infinite series:
\[ S = 1 + \frac{x}{2\sqrt{3}} + \frac{x^2}{18} + \frac{x^3}{36\sqrt{3}} + \frac{x^4}{180} + \dots, \] where \( x = \sqrt{3} - \sqrt{2} \).
Step 1: Expressing the Series Let:
\[ t = \frac{x}{\sqrt{3}} \quad \text{where} \quad x = \sqrt{3} - \sqrt{2}. \]
Rewriting the series:
\[ S = 1 + \frac{t}{2} + \frac{t^2}{6} + \frac{t^3}{12} + \frac{t^4}{20} + \dots. \]
Step 2: Using the Known Expansion From known series expansions, we have:
\[ S = 2 + \sum_{n=1}^\infty \frac{t^n}{n(n+1)}. \]
Using the expansion:
\[ S = 2 + \left(- \log(1 - t)\right) + 2. \]
Substituting \( t = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3}} \):
\[ S = 2 + \log\left(\frac{\sqrt{3}}{\sqrt{3} - \sqrt{2}}\right). \]
Step 3: Evaluating Constants Given:
\[ S = 2 \left(\sqrt{\frac{b}{a} + 1}\right) \log_e\left(\frac{a}{b}\right). \]
Comparing terms, we identify:
\[ a = 2, \quad b = 3. \]
Step 4: Calculating the Required Expression
\[ 11a + 18b = 11 \times 2 + 18 \times 3 = 22 + 54 = 76. \]
Therefore, the correct answer is \( 76 \).
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: