\(\frac{1}{20}\left(\frac{1}{20-a} - \frac{1}{40-a} + \frac{1}{40-a} - \frac{1}{60-a} + \ldots + \frac{1}{180-a} - \frac{1}{200-a}\right) = \frac{1}{256}\)
\(⇒\) \(\frac{1}{20}\left(\frac{1}{20-a} - \frac{1}{200-a}\right) = \frac{1}{256}\)
\(⇒\) \(\frac{1}{20} \cdot \frac{180}{(20-a)(200-a)} = \frac{1}{256}\)
\(⇒\) \((20 - a)(200 - a) = 9.256\)
\(⇒\) \(a^2 - 220a + 1696 = 0\)
\(⇒\) \(a = 212, 8\)
Then the maxixum value of \(a = 212\)
So, the correct option is (C): 212
Define \( f(x) = \begin{cases} x^2 + bx + c, & x< 1 \\ x, & x \geq 1 \end{cases} \). If f(x) is differentiable at x=1, then b−c is equal to
Match List-I with List-II.
Choose the correct answer from the options given below :
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: