\(\frac{1}{20}\left(\frac{1}{20-a} - \frac{1}{40-a} + \frac{1}{40-a} - \frac{1}{60-a} + \ldots + \frac{1}{180-a} - \frac{1}{200-a}\right) = \frac{1}{256}\)
\(⇒\) \(\frac{1}{20}\left(\frac{1}{20-a} - \frac{1}{200-a}\right) = \frac{1}{256}\)
\(⇒\) \(\frac{1}{20} \cdot \frac{180}{(20-a)(200-a)} = \frac{1}{256}\)
\(⇒\) \((20 - a)(200 - a) = 9.256\)
\(⇒\) \(a^2 - 220a + 1696 = 0\)
\(⇒\) \(a = 212, 8\)
Then the maxixum value of \(a = 212\)
So, the correct option is (C): 212
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: