Let the three points be \(A(1, 1)\), \(B(-2, 2)\), and \(C(2, -2)\).
We want to find the center of the circle passing through these points.
Let the center be \((h, k)\).
The distance from the center to each of the points is the radius \(r\).
So, \((h-1)^2 + (k-1)^2 = (h+2)^2 + (k-2)^2 = (h-2)^2 + (k+2)^2\).
From \((h-1)^2 + (k-1)^2 = (h+2)^2 + (k-2)^2\):
\(h^2 - 2h + 1 + k^2 - 2k + 1 = h^2 + 4h + 4 + k^2 - 4k + 4\)
\(-2h - 2k + 2 = 4h - 4k + 8\)
\(6h - 2k + 6 = 0\)
\(3h - k + 3 = 0\)
\(k = 3h + 3 \quad (1)\)
From \((h+2)^2 + (k-2)^2 = (h-2)^2 + (k+2)^2\):
\(h^2 + 4h + 4 + k^2 - 4k + 4 = h^2 - 4h + 4 + k^2 + 4k + 4\)
\(4h - 4k + 8 = -4h + 4k + 8\)
\(8h - 8k = 0\)
\(h = k \quad (2)\)
Substituting (2) into (1):
\(h = 3h + 3\)
\(-2h = 3\)
\(h = -\frac{3}{2}\)
Since \(h = k\), \(k = -\frac{3}{2}\).
The center of the circle is \(\left(-\frac{3}{2}, -\frac{3}{2}\right)\).
We want to find the perpendicular distance from the center \(\left(-\frac{3}{2}, -\frac{3}{2}\right)\) to the line \(3x - 4y + 1 = 0\).
The distance is given by:
\[d = \frac{|3(-\frac{3}{2}) - 4(-\frac{3}{2}) + 1|}{\sqrt{3^2 + (-4)^2}}\]
\[d = \frac{|-\frac{9}{2} + \frac{12}{2} + 1|}{\sqrt{9 + 16}}\]
\[d = \frac{|\frac{3}{2} + 1|}{5}\]
\[d = \frac{|\frac{5}{2}|}{5}\]
\[d = \frac{5}{2 \times 5} = \frac{1}{2}\]
Final Answer: The final answer is $\boxed{(1)}$