Given:
\( \tan \theta = \frac{\sqrt{5}}{2} \)
Using the identity:
\(\tan \theta = \frac{\sin \theta}{\cos \theta}\), we assume \(\sin \theta = \sqrt{5}k\) and \(\cos \theta = 2k\) for some \(k\).
Using the Pythagorean identity:
\(\sin^2 \theta + \cos^2 \theta = 1\)
Substituting the values:
\((\sqrt{5}k)^2 + (2k)^2 = 1\)
\(5k^2 + 4k^2 = 1\)
\(9k^2 = 1\)
\(k^2 = \frac{1}{9}\)
\(k = \frac{1}{3}\) (taking the positive value as \(0 < \theta < \frac{\pi}{2}\))
Thus,
\(\cos \theta = 2k = 2 \times \frac{1}{3} = \frac{2}{3}\)
Therefore, the correct answer is:
\(\frac{2}{3}\)